
Package: textTools (via r-universe)
October 18, 2024

Type Package

Title Functions for Text Cleansing and Text Analysis

Version 0.1.0

Author Timothy Conwell

Maintainer Timothy Conwell <timconwell@gmail.com>

Description A framework for text cleansing and analysis. Conveniently
prepare and process large amounts of text for analysis.
Includes various metrics for word counts/frequencies that scale
efficiently. Quickly analyze large amounts of text data using a
text.table (a data.table created with one word (or unit of text
analysis) per row, similar to the tidytext format). Offers
flexibility to efficiently work with text data stored in
vectors as well as text data formatted as a text.table.

License GPL (>= 2)

Encoding UTF-8

LazyData true

Depends R (>= 3.5.0), data.table

RoxygenNote 7.1.1

NeedsCompilation no

Date/Publication 2021-02-05 09:00:05 UTC

Repository https://tconwell.r-universe.dev

RemoteUrl https://github.com/cran/textTools

RemoteRef HEAD

RemoteSha 83bcb2e07bf66ccc2e65075dad052de8287cac39

Contents
as.text.table . 3
flag_words . 4
label_parts_of_speech . 5

1

2 Contents

l_pos . 6
ngrams . 6
pos . 7
regex_paragraph . 8
regex_sentence . 8
regex_word . 9
rm_frequent_words . 9
rm_infrequent_words . 10
rm_long_words . 12
rm_no_overlap . 13
rm_overlap . 14
rm_parts_of_speech . 15
rm_regexp_match . 16
rm_short_words . 17
rm_words . 18
sampleStr . 19
stopwords . 20
str_any_match . 20
str_counts . 21
str_count_intersect . 22
str_count_jaccard_similarity . 22
str_count_match . 23
str_count_nomatch . 24
str_count_positional_match . 24
str_count_positional_nomatch . 25
str_count_setdiff . 26
str_dt_col_combine . 26
str_extract_match . 27
str_extract_nomatch . 28
str_extract_positional_match . 28
str_extract_positional_nomatch . 29
str_rm_blank_space . 30
str_rm_long_words . 30
str_rm_non_alphanumeric . 31
str_rm_non_printable . 31
str_rm_numbers . 32
str_rm_punctuation . 32
str_rm_regexp_match . 33
str_rm_short_words . 33
str_rm_words . 34
str_rm_words_by_length . 35
str_stopwords_by_part_of_speech . 35
str_tolower . 36
str_weighted_count_match . 37

Index 38

as.text.table 3

as.text.table Convert a data.table column of character vectors into a column with
one row per word grouped by a grouping column. Optionally will split
a column of strings into vectors of constituents.

Description

Convert a data.table column of character vectors into a column with one row per word grouped by
a grouping column. Optionally will split a column of strings into vectors of constituents.

Usage

as.text.table(x, text, split = NULL, group_by = NULL)

Arguments

x A data.table.

text A string, the name of the column in x containing text to un-nest.

split A string with a pattern to split the text in text column into constituent parts.

group_by A vector of column names to group by. Doesn’t work if the group by column is
a list column.

Value

A data.table, text column un-nested to one row per word.

Examples

as.text.table(
x = as.data.table(

list(
col1 = c(

"a",
"b"

),
col2 = c(

tolower("The dog is nice because it picked up the newspaper."),
tolower("The dog is extremely nice because it does the dishes.")

)
)

),
text = "col2",
split = " "

)

4 flag_words

flag_words Flag rows in a text.table with specific words

Description

Flag rows in a text.table with specific words

Usage

flag_words(x, text, flag = "flag", words)

Arguments

x A text.table created by as.text.table().

text A string, the name of the column in x to check for words to flag.

flag A string, the name of the column created with the flag indicator.

words A vector of words to flag x.

Value

A text.table, with rows marked with a 1 if the words in those rows are in the vector of words to
delete, otherwise 0.

Examples

flag_words(
as.text.table(

x = as.data.table(
list(

col1 = c(
"a",
"b"

),
col2 = c(

tolower("The dog is nice because it picked up the newspaper."),
tolower("The dog is extremely nice because it does the dishes.")

)
)

),
text = "col2",
split = " "

),
text = "col2",
flag = "is_stopword",
words = stopwords
)

label_parts_of_speech 5

label_parts_of_speech Add a column with the parts of speech for each word in a text.table

Description

Add a column with the parts of speech for each word in a text.table

Usage

label_parts_of_speech(x, text)

Arguments

x A text.table created by as.text.table().

text A string, the name of the column in x to label the parts of speech.

Value

A text.table, with columns added for the matching part of speech and for flagging if the part of
speech is for a multi-word phrase.

Examples

label_parts_of_speech(
as.text.table(

x = as.data.table(
list(

col1 = c(
"a",
"b"

),
col2 = c(

tolower("The dog is nice because it picked up the newspaper."),
tolower("The dog is extremely nice because it does the dishes.")

)
)

),
text = "col2",
split = " "

),
text = "col2"
)

6 ngrams

l_pos Parts of speech for English words from the Moby Project.

Description

Parts of speech for English words/phrases from the Moby Project by Grady Ward. Words with
non-ASCII characters have been removed. One row per word.

Usage

l_pos

Format

Data.table with 227519 rows and 3 variables #’

word Lowercase English word or phrase

pos Lowercase English part of speech, grouped by word into a vector if a word has multiple parts
of speech.

multi_word TRUE if the word record has a space (contains multiple words), else FALSE.

Source

https://archive.org/details/mobypartofspeech03203gut

ngrams Create n-grams

Description

Create n-grams

Usage

ngrams(
x,
text,
group_by = c(),
count_col_name = "count",
n,
ngram_prefix = NULL

)

https://archive.org/details/mobypartofspeech03203gut

pos 7

Arguments

x A text.table created by as.text.table().

text A string, the name of the column in x to build n-grams with.

group_by A vector of column names to group by. Doesn’t work if the group by column is
a list column.

count_col_name A string, the name of the output column containing the number of times each
base record appears in the group.

n A integer, the number of grams to make.

ngram_prefix A string, a prefix to add to the output n-gram columns.

Value

A text.table, with columns added for n-grams (the word, the count, and percent of the time the gram
follows the word).

Examples

ngrams(
as.text.table(

x = as.data.table(
list(

col1 = c(
"a",
"b"

),
col2 = c(

tolower("The dog is nice because it picked up the newspaper."),
tolower("The dog is extremely nice because it does the dishes.")

)
)

),
text = "col2",
split = " "

),
text = "col2",
group_by = "col1",
n = 2
)

pos Parts of speech for English words from the Moby Project.

Description

Parts of speech for English words/phrases from the Moby Project by Grady Ward. Words with
non-ASCII characters have been removed. One row per word + part of speech

8 regex_sentence

Usage

pos

Format

Data.table with 246690 rows and 3 variables #’

word Lowercase English word or phrase
pos Lowercase English part of speech, one per row
multi_word TRUE if the word record has a space (contains multiple words), else FALSE.

Source

https://archive.org/details/mobypartofspeech03203gut

regex_paragraph Regular expression that might be used to split strings of text into com-
ponent paragraphs.

Description

"\n", A regular expression to split strings when encountering a new line.

Usage

regex_paragraph

Format

A string

regex_sentence Regular expression that might be used to split strings of text into com-
ponent sentences.

Description

"[.?!]\s", A regular expression to split strings when encountering a common end of sentence punc-
tuation pattern.

Usage

regex_sentence

Format

A string

https://archive.org/details/mobypartofspeech03203gut

regex_word 9

regex_word Regular expression that might be used to split strings of text into com-
ponent words.

Description

" ", A regular expression to split strings when encountering a space.

Usage

regex_word

Format

A string

rm_frequent_words Delete rows in a text.table where the number of identical records
within a group is more than a certain threshold

Description

Delete rows in a text.table where the number of identical records within a group is more than a
certain threshold

Usage

rm_frequent_words(
x,
text,
count_col_name = NULL,
group_by = c(),
max_count,
max_count_is_ratio = FALSE,
total_count_col = NULL

)

Arguments

x A text.table created by as.text.table().

text A string, the name of the column in x used to determine deletion of rows based
on the term frequency.

count_col_name A string, the name to assign to the new column containing the count of each
word. If NULL, does not return the counts.

10 rm_infrequent_words

group_by A vector of column names to group by. Doesn’t work if the group by column is
a list column.

max_count A number, the maximum number of times a word can occur to keep.
max_count_is_ratio

TRUE/FALSE, if TRUE, implies the value passed to max_count should be con-
sidered a ratio.

total_count_col

Name of the column containing the denominator (likely total count of records
within a group) to use to calculate the ratio of a word count vs total if max_count_is_ratio
is TRUE.

Value

A text.table, with rows having a duplicate count over a certain threshold deleted.

Examples

rm_frequent_words(
as.text.table(

x = as.data.table(
list(

col1 = c(
"a",
"b"

),
col2 = c(

tolower("The dog is nice because it picked up the newspaper."),
tolower("The dog is extremely nice because it does the dishes.")

)
)

),
text = "col2",
split = " "

),
text = "col2",
count_col_name = "count",
max_count = 1
)

rm_infrequent_words Delete rows in a text.table where the number of identical records
within a group is less than a certain threshold

Description

Delete rows in a text.table where the number of identical records within a group is less than a certain
threshold

rm_infrequent_words 11

Usage

rm_infrequent_words(
x,
text,
count_col_name = NULL,
group_by = c(),
min_count,
min_count_is_ratio = FALSE,
total_count_col = NULL

)

Arguments

x A text.table created by as.text.table().

text A string, the name of the column in x used to determine deletion of rows based
on the term frequency.

count_col_name A string, the name to assign to the new column containing the count of each
word. If NULL, does not return the counts.

group_by A vector of column names to group by. Doesn’t work if the group by column is
a list column.

min_count A number, the minimum number of times a word must occur to keep.
min_count_is_ratio

TRUE/FALSE, if TRUE, implies the value passed to min_count should be con-
sidered a ratio.

total_count_col

Name of the column containing the denominator (likely total count of records
within a group) to use to calculate the ratio of a word count vs total if min_count_is_ratio
is TRUE.

Value

A text.table, with rows having a duplicate count of less than a certain threshold deleted.

Examples

rm_infrequent_words(
as.text.table(

x = as.data.table(
list(

col1 = c(
"a",
"b"

),
col2 = c(

tolower("The dog is nice because it picked up the newspaper."),
tolower("The dog is extremely nice because it does the dishes.")

)
)

12 rm_long_words

),
text = "col2",
split = " "

),
text = "col2",
count_col_name = "count",
min_count = 4
)

rm_infrequent_words(
as.text.table(

x = as.data.table(
list(

col1 = c(
"a",
"b"

),
col2 = c(

tolower("The dog is nice because it picked up the
newspaper and it is the nice kind of dog."),
tolower("The dog is extremely nice because it does the dishes
and it is cool.")

)
)

),
text = "col2",
split = " "

),
text = "col2",
count_col_name = "count",
group_by = "col1",
min_count = 2
)

rm_long_words Delete rows in a text.table where the word has more than a minimum
number of characters

Description

Delete rows in a text.table where the word has more than a minimum number of characters

Usage

rm_long_words(x, text, max_char_length)

Arguments

x A text.table created by as.text.table().

rm_no_overlap 13

text A string, the name of the column in x used to determine deletion of rows based
on the number of characters.

max_char_length

A number, the maximum number of characters allowed to not delete a row.

Value

A text.table, with rows having more than a certain number of characters deleted.

Examples

rm_long_words(
as.text.table(

x = as.data.table(
list(

col1 = c(
"a",
"b"

),
col2 = c(

tolower("The dog is nice because it picked up the newspaper."),
tolower("The dog is extremely nice because it does the dishes.")

)
)

),
text = "col2",
split = " "

),
text = "col2",
max_char_length = 4
)

rm_no_overlap Delete rows in a text.table where the records within a group are not
also found in other groups (overlapping records)

Description

Delete rows in a text.table where the records within a group are not also found in other groups
(overlapping records)

Usage

rm_no_overlap(x, text, group_by = c())

14 rm_overlap

Arguments

x A text.table created by as.text.table().

text A string, the name of the column in x to determine deletion of rows based on the
lack of presence of overlapping records.

group_by A vector of column names to group by. Doesn’t work if the group by column is
a list column.

Value

A text.table, with rows not having records found in multiple groups (overlapping records) deleted.

Examples

rm_no_overlap(
as.text.table(

x = as.data.table(
list(

col1 = c(
"a",
"b"

),
col2 = c(

tolower("The dog is nice because it picked up the newspaper."),
tolower("The dog is extremely nice because it does the dishes.")

)
)

),
text = "col2",
split = " "

),
text = "col2",
group_by = "col1"
)

rm_overlap Delete rows in a text.table where the records within a group are also
found in other groups (overlapping records)

Description

Delete rows in a text.table where the records within a group are also found in other groups (over-
lapping records)

Usage

rm_overlap(x, text, group_by = c())

rm_parts_of_speech 15

Arguments

x A text.table created by as.text.table().
text A string, the name of the column in x to determine deletion of rows based on the

presence of overlapping records.
group_by A vector of column names to group by. Doesn’t work if the group by column is

a list column.

Value

A text.table, with rows having records found in multiple groups (overlapping records) deleted.

Examples

rm_overlap(
as.text.table(

x = as.data.table(
list(

col1 = c(
"a",
"b"

),
col2 = c(

tolower("The dog is nice because it picked up the newspaper."),
tolower("The dog is extremely nice because it does the dishes.")

)
)

),
text = "col2",
split = " "

),
text = "col2",
group_by = "col1"
)

rm_parts_of_speech Delete rows in a text.table where the word has a certain part of speech

Description

Delete rows in a text.table where the word has a certain part of speech

Usage

rm_parts_of_speech(
x,
text,
pos_delete = c("adjective", "adverb", "conjunction", "definite article",
"interjection", "noun", "noun phrase", "plural", "preposition", "pronoun",
"verb (intransitive)", "verb (transitive)", "verb (usu participle)")

)

16 rm_regexp_match

Arguments

x A text.table created by as.text.table().

text A string, the name of the column in x used to determine deletion of rows based
on the part of speech.

pos_delete A vector of parts of speech to delete. At least one of the following: ’adjective’,
’adverb’, ’conjunction’, ’definite article’, ’interjection’, ’noun’, ’noun phrase’,
’plural’, ’preposition’, ’pronoun’, ’verb (intransitive)’, ’verb (transitive)’, ’verb
(usu participle)’

Value

A text.table, with rows matching a part of speech deleted.

Examples

rm_parts_of_speech(
as.text.table(

x = as.data.table(
list(

col1 = c(
"a",
"b"

),
col2 = c(

tolower("The dog is nice because it picked up the newspaper."),
tolower("The dog is extremely nice because it does the dishes.")

)
)

),
text = "col2",
split = " "

),
text = "col2",
pos_delete = "conjunction"
)

rm_regexp_match Delete rows in a text.table where the record has a certain pattern in-
dicated by a regular expression

Description

Delete rows in a text.table where the record has a certain pattern indicated by a regular expression

Usage

rm_regexp_match(x, text, pattern)

rm_short_words 17

Arguments

x A text.table created by as.text.table().

text A string, the name of the column in x used to determine deletion of rows based
on the regular expression.

pattern A regular expression, gets passed to grepl().

Value

A text.table, with rows having a certain pattern indicated by a regular expression deleted.

Examples

rm_regexp_match(
as.text.table(

x = as.data.table(
list(

col1 = c(
"a",
"b"

),
col2 = c(

tolower("The dog is nice because it picked up the newspaper."),
tolower("The dog is extremely nice because it does the dishes.")

)
)

),
text = "col2",
split = " "

),
text = "col2",
pattern = "do"
)

rm_short_words Delete rows in a text.table where the word has less than a minimum
number of characters

Description

Delete rows in a text.table where the word has less than a minimum number of characters

Usage

rm_short_words(x, text, min_char_length)

18 rm_words

Arguments

x A text.table created by as.text.table().
text A string, the name of the column in x used to determine deletion of rows based

on the number of characters.
min_char_length

A number, the minimum number of characters required to not delete a row.

Value

A text.table, with rows having less than a certain number of characters deleted.

Examples

rm_short_words(
as.text.table(

x = as.data.table(
list(

col1 = c(
"a",
"b"

),
col2 = c(

tolower("The dog is nice because it picked up the newspaper."),
tolower("The dog is extremely nice because it does the dishes.")

)
)

),
text = "col2",
split = " "

),
text = "col2",
min_char_length = 4
)

rm_words Remove rows from a text.table with specific words

Description

Remove rows from a text.table with specific words

Usage

rm_words(x, text, words = stopwords)

Arguments

x A text.table created by as.text.table().
text A string, the name of the column in x to check for words to delete.
words A vector of words to delete from x.

sampleStr 19

Value

A text.table, with rows deleted if the words in those rows are in the vector of words to delete.

Examples

rm_words(
as.text.table(

x = as.data.table(
list(

col1 = c(
"a",
"b"

),
col2 = c(

tolower("The dog is nice because it picked up the newspaper."),
tolower("The dog is extremely nice because it does the dishes.")

)
)

),
text = "col2",
split = " "

),
text = "col2"
)

sampleStr Generates (pseudo)random strings of the specified char length

Description

Generates (pseudo)random strings of the specified char length

Usage

sampleStr(char)

Arguments

char A integer, the number of chars to include in the output string.

Value

A string.

Examples

sampleStr(10)

20 str_any_match

stopwords Vector of lowercase English stop words.

Description

Unique lowercase English stop words from 3 lexicons combined into one vector. Combines snow-
ball, onix, and SMART lists of stopwords.

Usage

stopwords

Format

A vector of 728 unique English stop words in lowercase

Source

http://snowball.tartarus.org/algorithms/english/stop.txt

http://www.lextek.com/manuals/onix/stopwords1.html

http://www.lextek.com/manuals/onix/stopwords2.html

str_any_match Detect if there are any words in a vector also found in another vector.

Description

Detect if there are any words in a vector also found in another vector.

Usage

str_any_match(x, y)

Arguments

x A vector of words.

y A vector of words to test against.

Value

TRUE/FALSE, TRUE if any words in x are also in y

http://snowball.tartarus.org/algorithms/english/stop.txt
http://www.lextek.com/manuals/onix/stopwords1.html
http://www.lextek.com/manuals/onix/stopwords2.html

str_counts 21

Examples

str_any_match(
x = c("a", "dog", "went", "to", "the", "store"),
y = c("the")
)
str_any_match(
x = c("a", "dog", "went", "to", "the", "store"),
y = c("apple")
)

str_counts Create a list of a vector of unique words found in x and a vector of the
counts of each word in x.

Description

Create a list of a vector of unique words found in x and a vector of the counts of each word in x.

Usage

str_counts(x)

Arguments

x A vector of words.

Value

A list, position one is a vector of unique and sorted words from x, position two is a vector of the
counts for each word.

Examples

str_counts(
x = c("a", "dog", "went", "to", "the", "store", "and", "a", "dog", "went", "to", "another", "store")
)

22 str_count_jaccard_similarity

str_count_intersect Count the intersecting words in a vector that are found in another
vector (only counts unique words).

Description

Count the intersecting words in a vector that are found in another vector (only counts unique words).

Usage

str_count_intersect(x, y)

Arguments

x A vector of words.

y A vector of words to test against.

Value

A number, the count of unique words in x also in y

Examples

str_count_intersect(
x = c("a", "dog", "went", "to", "the", "store"),
y = c("dog", "to", "store")
)

str_count_jaccard_similarity

Calculates the intersect divided by union of two vectors of words.

Description

Calculates the intersect divided by union of two vectors of words.

Usage

str_count_jaccard_similarity(x, y)

Arguments

x A vector of words.

y A vector of words to test against.

str_count_match 23

Value

A number, the intersect divided by union of two vectors of words.

Examples

str_count_jaccard_similarity(
x = c("a", "dog", "went", "to", "the", "store"),
y = c("this", "dog", "went", "to", "the", "store")
)

str_count_match Count the words in a vector that are found in another vector.

Description

Count the words in a vector that are found in another vector.

Usage

str_count_match(x, y, ratio = FALSE)

Arguments

x A vector of words.

y A vector of words to test against.

ratio TRUE/FALSE, if TRUE, returns the number of words in x with a match in y
divided by the number of words in x.

Value

A number, the count of words in x also in y

Examples

str_count_match(
x = c("a", "dog", "went", "to", "the", "store"),
y = c("dog", "to", "store")
)
str_count_match(
x = c("a", "dog", "went", "to", "the", "store"),
y = c("dog", "to", "store"),
ratio = TRUE
)

24 str_count_positional_match

str_count_nomatch Count the words in a vector that are not found in another vector.

Description

Count the words in a vector that are not found in another vector.

Usage

str_count_nomatch(x, y, ratio = FALSE)

Arguments

x A vector of words.

y A vector of words to test against.

ratio TRUE/FALSE, if TRUE, returns the number of words in x without a match in y
divided by the number of words in x.

Value

A number, the count of words in x and not in y

Examples

str_count_nomatch(
x = c("a", "dog", "went", "to", "the", "store"),
y = c("dog", "to", "store")
)
str_count_nomatch(
x = c("a", "dog", "went", "to", "the", "store"),
y = c("dog", "store"),
ratio = TRUE
)

str_count_positional_match

Count words from a vector that are found in the same position in an-
other vector.

Description

Count words from a vector that are found in the same position in another vector.

Usage

str_count_positional_match(x, y, ratio = FALSE)

str_count_positional_nomatch 25

Arguments

x A vector of words.

y A vector of words to test against.

ratio TRUE/FALSE, if TRUE, returns the number of words in x with a positional
match in y divided by the number of words in x.

Value

A count of the words in x with matches in the same position in y.

Examples

str_count_positional_match(
x = c("a", "dog", "went", "to", "the", "store"),
y = c("this", "dog", "ran", "from", "the", "store")
)

str_count_positional_nomatch

Count words from a vector that are not found in the same position in
another vector.

Description

Count words from a vector that are not found in the same position in another vector.

Usage

str_count_positional_nomatch(x, y, ratio = FALSE)

Arguments

x A vector of words.

y A vector of words to test against.

ratio TRUE/FALSE, if TRUE, returns the number of words in x without a positional
match in y divided by the number of words in x.

Value

A count of the words in x without matches in the same position in y.

Examples

str_count_positional_nomatch(
x = c("a", "cool", "dog", "went", "to", "the", "store"),
y = c("a", "dog", "ran", "from", "the", "store")
)

26 str_dt_col_combine

str_count_setdiff Count the words in a vector that don’t intersect with another vector
(only counts unique words).

Description

Count the words in a vector that don’t intersect with another vector (only counts unique words).

Usage

str_count_setdiff(x, y)

Arguments

x A vector of words.

y A vector of words to test against.

Value

A number, the count of unique words in x not also in y

Examples

str_count_setdiff(
x = c("a", "dog", "dog", "went", "to", "the", "store"),
y = c("dog", "to", "store")
)

str_dt_col_combine Combine columns of a data.table into a list in a new column, wraps
list(unlist(c(...)))

Description

Combine columns of a data.table into a list in a new column, wraps list(unlist(c(...)))

Usage

str_dt_col_combine(...)

Arguments

... Unquoted column names of a data.table.

Value

A list, with columns combined into a vector if grouped properly

str_extract_match 27

Examples

as.data.table(
list(

col1 = c(
"a",
"b"

),
col2 = c(

tolower("The dog is nice because it picked up the newspaper."),
tolower("The dog is extremely nice because it does the dishes.")

),
col3 = c(

"test 1",
"test 2"

)
)
)[, col4 := .(str_dt_col_combine(col2, col3)), col1]

str_extract_match Extract words from a vector that are found in another vector.

Description

Extract words from a vector that are found in another vector.

Usage

str_extract_match(x, y)

Arguments

x A vector of words.

y A vector of words to test against.

Value

x, with the words not found in y removed.

Examples

str_extract_match(
x = c("a", "dog", "went", "to", "the", "store"),
y = c("dog", "to", "store")
)

28 str_extract_positional_match

str_extract_nomatch Extract words from a vector that are not found in another vector.

Description

Extract words from a vector that are not found in another vector.

Usage

str_extract_nomatch(x, y)

Arguments

x A vector of words.

y A vector of words to test against.

Value

x, with the words found in y removed.

Examples

str_extract_nomatch(
x = c("a", "dog", "went", "to", "the", "store"),
y = c("dog", "to", "store")
)

str_extract_positional_match

Extract words from a vector that are found in the same position in
another vector.

Description

Extract words from a vector that are found in the same position in another vector.

Usage

str_extract_positional_match(x, y)

Arguments

x A vector of words.

y A vector of words to test against.

str_extract_positional_nomatch 29

Value

x, with the words without matches in the same position in y removed.

Examples

str_extract_positional_match(
x = c("a", "dog", "went", "to", "the", "store"),
y = c("this", "dog", "ran", "from", "the", "store")
)

str_extract_positional_nomatch

Extract words from a vector that are not found in the same position in
another vector.

Description

Extract words from a vector that are not found in the same position in another vector.

Usage

str_extract_positional_nomatch(x, y)

Arguments

x A vector of words.

y A vector of words to test against.

Value

x, with the words with matches found in the same position in y removed.

Examples

str_extract_positional_nomatch(
x = c("a", "dog", "went", "to", "the", "store"),
y = c("a", "crazy", "dog", "ran", "from", "the", "store")
)

30 str_rm_long_words

str_rm_blank_space Remove and replace excess white space from strings.

Description

Remove and replace excess white space from strings.

Usage

str_rm_blank_space(x, replacement = " ")

Arguments

x A vector or string.

replacement A string to replace the blank space with, defaults to " ", which replaces excess
space with a single space.

Value

x, with extra white space removed/replaced.

Examples

str_rm_blank_space(c("this is a test. ", " will it work? "))

str_rm_long_words Remove words from a vector that have more than a maximum number
of characters.

Description

Remove words from a vector that have more than a maximum number of characters.

Usage

str_rm_long_words(x, max_char_length)

Arguments

x A vector of words.
max_char_length

An integer, the maximum number of characters a word can have to not be re-
moved.

Value

x, with the words not having a character count less than or equal to the max_char_length removed.

str_rm_non_alphanumeric 31

Examples

str_rm_long_words(
x = c("a", "dog", "went", "to", "the", "store"),
max_char_length = 2
)

str_rm_non_alphanumeric

Remove and replace non-alphanumeric characters from strings.

Description

Remove and replace non-alphanumeric characters from strings.

Usage

str_rm_non_alphanumeric(x, replacement = " ")

Arguments

x A vector or string.

replacement A string to replace the numbers with, defaults to " ".

Value

x, with non-alphanumeric (A-z, 0-9) characters removed/replaced.

Examples

str_rm_non_alphanumeric(c("test 67890 * % $ "))

str_rm_non_printable Remove and replace non-printable characters from strings.

Description

Remove and replace non-printable characters from strings.

Usage

str_rm_non_printable(x, replacement = " ")

Arguments

x A vector or string.

replacement A string to replace the numbers with, defaults to " ".

32 str_rm_punctuation

Value

x, with non-printable characters removed/replaced.

Examples

str_rm_non_printable(c("test \n\n\n67890 * % $ "))

str_rm_numbers Remove and replace numbers from strings.

Description

Remove and replace numbers from strings.

Usage

str_rm_numbers(x, replacement = "")

Arguments

x A vector or string.

replacement A string to replace the numbers with, defaults to "".

Value

x, with numbers 0-9 removed/replaced.

Examples

str_rm_numbers(c("test 1a234b5", "test 67890"))

str_rm_punctuation Remove and replace punctuation from strings.

Description

Remove and replace punctuation from strings.

Usage

str_rm_punctuation(x, replacement = "")

Arguments

x A vector or string.

replacement A string to replace the punctuation with, defaults to "".

str_rm_regexp_match 33

Value

x, with punctuation removed/replaced.

Examples

str_rm_punctuation(c("wait, is this is a test?", "Tests: . ! ?"))

str_rm_regexp_match Remove words from a vector that match a regular expression.

Description

Remove words from a vector that match a regular expression.

Usage

str_rm_regexp_match(x, pattern)

Arguments

x A vector of words.

pattern A regular expression.

Value

x, with the words matching the regular expression removed.

Examples

str_rm_regexp_match(
x = c("a", "dog", "went", "to", "the", "store"),
pattern = "to"
)

str_rm_short_words Remove words from a vector that don’t have a minimum number of
characters.

Description

Remove words from a vector that don’t have a minimum number of characters.

Usage

str_rm_short_words(x, min_char_length)

34 str_rm_words

Arguments

x A vector of words.
min_char_length

An integer, the minimum number of characters a word can have to not be re-
moved.

Value

x, with the words not having a character count greater than or equal to the min_char_length re-
moved.

Examples

str_rm_short_words(
x = c("a", "dog", "went", "to", "the", "store"),
min_char_length = 3
)

str_rm_words Remove words from a vector of words found in another vector of
words.

Description

Remove words from a vector of words found in another vector of words.

Usage

str_rm_words(x, y = stopwords)

Arguments

x A vector of words.
y A vector of words to delete from x, defaults to English stop words.

Value

x, with the words found in y removed.

Examples

str_rm_words(
x = c("a", "dog", "went", "to", "the", "store"),
y = stopwords
)

str_rm_words(
x = c("a", "dog", "went", "to", "the", "store"),
y = c("dog", "store")
)

str_rm_words_by_length 35

str_rm_words_by_length

Remove words from a vector based on the number of characters in
each word.

Description

Remove words from a vector based on the number of characters in each word.

Usage

str_rm_words_by_length(x, min_char_length = 0, max_char_length = Inf)

Arguments

x A vector of words.
min_char_length

An integer, the minimum number of characters a word can have to not be re-
moved.

max_char_length

An integer, the maximum number of characters a word can have to not be re-
moved.

Value

x, with the words not having a character count of at least the min_char_length and at most the
max_char_length removed.

Examples

str_rm_words_by_length(
x = c("a", "dog", "went", "to", "the", "store"),
min_char_length = 3
)

str_stopwords_by_part_of_speech

Create a vector of English words associated with particular parts of
speech.

Description

Create a vector of English words associated with particular parts of speech.

36 str_tolower

Usage

str_stopwords_by_part_of_speech(
parts = c("adjective", "adverb", "conjunction", "definite article", "interjection",
"noun", "noun phrase", "plural", "preposition", "pronoun", "verb (intransitive)",
"verb (transitive)", "verb (usu participle)"),

include_multi_word = FALSE
)

Arguments

parts A vector, at least one of the following: ’adjective’, ’adverb’, ’conjunction’, ’def-
inite article’, ’interjection’, ’noun’, ’noun phrase’, ’plural’, ’preposition’, ’pro-
noun’, ’verb (intransitive)’, ’verb (transitive)’, ’verb (usu participle)’

include_multi_word

TRUE/FALSE, if TRUE, includes records from the pos data.table where multi_word
== TRUE, otherwise excludes these records.

Value

A vector of words matching the part of speech shown in the data.table pos.

Examples

str_stopwords_by_part_of_speech('adjective')

str_tolower Calls base::tolower(), which converts letters to lowercase. Only in-
cluded to point out that base::tolower exists and should be used di-
rectly.

Description

Calls base::tolower(), which converts letters to lowercase. Only included to point out that base::tolower
exists and should be used directly.

Usage

str_tolower(x)

Arguments

x A vector or string.

Value

x, converted to lowercase.

str_weighted_count_match 37

Examples

str_tolower(c("ALLCAPS", "Some capS"))

str_weighted_count_match

Weighted count of the words in a vector that are found in another vec-
tor.

Description

Weighted count of the words in a vector that are found in another vector.

Usage

str_weighted_count_match(x, y)

Arguments

x A list of words and counts created by str_counts(x).

y A list of words and counts created by str_counts(y).

Value

A number, the count of words in x also in y scaled by the number of times each word appears in
x and y. If a word appears 3 times in x and 2 times in y, the result is 6, assuming no other words
match.

Examples

str_weighted_count_match(
x = str_counts(c("a", "dog", "dog", "went", "to", "the", "store")),
y = str_counts(c("dog", "dog", "dog"))
)

Index

∗ datasets
l_pos, 6
pos, 7
regex_paragraph, 8
regex_sentence, 8
regex_word, 9
stopwords, 20

as.text.table, 3

flag_words, 4

l_pos, 6
label_parts_of_speech, 5

ngrams, 6

pos, 7

regex_paragraph, 8
regex_sentence, 8
regex_word, 9
rm_frequent_words, 9
rm_infrequent_words, 10
rm_long_words, 12
rm_no_overlap, 13
rm_overlap, 14
rm_parts_of_speech, 15
rm_regexp_match, 16
rm_short_words, 17
rm_words, 18

sampleStr, 19
stopwords, 20
str_any_match, 20
str_count_intersect, 22
str_count_jaccard_similarity, 22
str_count_match, 23
str_count_nomatch, 24
str_count_positional_match, 24
str_count_positional_nomatch, 25

str_count_setdiff, 26
str_counts, 21
str_dt_col_combine, 26
str_extract_match, 27
str_extract_nomatch, 28
str_extract_positional_match, 28
str_extract_positional_nomatch, 29
str_rm_blank_space, 30
str_rm_long_words, 30
str_rm_non_alphanumeric, 31
str_rm_non_printable, 31
str_rm_numbers, 32
str_rm_punctuation, 32
str_rm_regexp_match, 33
str_rm_short_words, 33
str_rm_words, 34
str_rm_words_by_length, 35
str_stopwords_by_part_of_speech, 35
str_tolower, 36
str_weighted_count_match, 37

38

	as.text.table
	flag_words
	label_parts_of_speech
	l_pos
	ngrams
	pos
	regex_paragraph
	regex_sentence
	regex_word
	rm_frequent_words
	rm_infrequent_words
	rm_long_words
	rm_no_overlap
	rm_overlap
	rm_parts_of_speech
	rm_regexp_match
	rm_short_words
	rm_words
	sampleStr
	stopwords
	str_any_match
	str_counts
	str_count_intersect
	str_count_jaccard_similarity
	str_count_match
	str_count_nomatch
	str_count_positional_match
	str_count_positional_nomatch
	str_count_setdiff
	str_dt_col_combine
	str_extract_match
	str_extract_nomatch
	str_extract_positional_match
	str_extract_positional_nomatch
	str_rm_blank_space
	str_rm_long_words
	str_rm_non_alphanumeric
	str_rm_non_printable
	str_rm_numbers
	str_rm_punctuation
	str_rm_regexp_match
	str_rm_short_words
	str_rm_words
	str_rm_words_by_length
	str_stopwords_by_part_of_speech
	str_tolower
	str_weighted_count_match
	Index

